
State Management 

Objectives 

• Learn what state is and how you use it. 

• Learn different methods of state management. 

• Learn the advantages and disadvantages of each method. 

Investigating State Management 
 

Web pages are, by definition, stateless. This means that as you move from 
page to page, the data from each page is automatically discarded. Because you 
might need data from one of these previous pages, you need to store that data 
(or state) as you move from one page to another. There are many techniques 
you can use to manage maintaining state. 

In this chapter, you will learn how to use the various state management 
techniques in your .NET Web applications. You will see how to use the Session 
object, StateBag objects, and the .NET Framework to help you manage state 
across a Web farm. You will also learn the advantages and disadvantages of 
each of these techniques. 

State Management Techniques 

You can manage state in your .NET Web applications using tools available in 
Internet Information Server and within the .NET Framework itself. Many of the 
IIS tools have not changed from Active Server Pages, but have been updated to 



State Management 

2 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

be more scalable. The .NET Framework has also added some additional tools 
that you will learn about in this chapter. Some of the ways you can use to 
manage state include the following: 

• Using Session and Application objects to cache information. 

• Using Memory and Disk Cookies to preserve information. 

• Using hidden input fields or the URL-embedded information to pass 
information from one page to another. 

• Using the ViewState property of the page to set and retrieve 
information stored in a StateBag object. 

• Using SQL Server to store state information. 

In each case, your goal is to take data from the current page, and have that 
data available, on demand, either when you redisplay the current page, or as 
reference when displaying a different page. 

Session and Application Objects 
The Session and Application objects allow you to store name/value pairs of 
values. The Session object stores values between Web pages, maintained for 
each user. Use the Application object to store data that you want to make 
available across the whole site, for all users. You might use a Session variable 
to keep track of user identity, as the user navigates the pages of your 
application. You might use an Application variable to keep track of the number 
of times a page has been hit. Both of these objects, Session and Application, 
store the state information on the Web server. 

Cookies 
Some developers use memory cookies to reduce the amount of resources 
stored on the server. Memory cookies pass back and forth from the browser to 
the server, where they’re maintained as the user moves from page to page on a 
site. When the user closes the browser, the cookie is released from memory. 

Permanent (or “hard”) cookies allow you to save data on the users’ local 
computers. If you know that a user will visit your site multiple times, it makes 
sense to save state information locally, if the user has allowed this option. The 
Web server sends permanent cookies to the user’s browser, and the browser 
stores this data on the user’s hard disk. The browser can retrieve this data from 
disk when the user revisits the Web site. The cookie is again passed from the 
browser to the server for each page. 

Hidden Input Fields 
Hidden input fields can be used to pass data from one page to another. When 
the user clicks on a Submit button, the form posts the data the user filled in, 
along with any hidden input fields as well. Create a hidden input field using a 
normal HTML tag, like this: 



 Investigating State Management 

Learning .NET 3 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

<input type="hidden" value="10" name="txtRate"> 

You can store data in a hidden input field to help maintain state from one page 
to another. In the example above, the value 10 is stored in the hidden field 
named txtRate .  

Embedded URL Parameters 
You may pass values on the URL by using value/data pairs. For example, you 
may call an ASP.NET page like this 

Main.aspx?CMD=1&ID=29398 

When you navigate to Main.aspx, you pass two variables in the URL: CMD and 
ID. You can pass quite a bit of information on this URL, so this is a reasonably 
effective method of maintaining state. 

WARNING! Passing parameter information in the URL 
displays the values for the user to see—that is, if 
it’s in the URL, it gets displayed in the browser. 
Don’t plan on passing sensitive data in the URL. 

StateBag Class 
The .NET Framework provides a StateBag class that allows you to preserve 
view state while you are working within one page. If the user will be posting 
data back to the server while staying on the same page, you can use a 
StateBag object to hold multiple intermediate values for this page. You might 
use this technique when the user must choose a value from one combo box on 
a page, and then, you want to fill the items in another combo box based on the 
selected item in the first combo box. 

SQL Server 
In addition to all the other techniques available, you can also store state 
information in a SQL Server database. If you need to maintain a lot of data 
between pages, this may be your best bet. If you’re gathering a large amount of 
data about the user over several Web pages, you might consider storing this 
data in SQL Server. There are two techniques for using SQL Server: you can 
construct the session data and insert the data into the database yourself, or you 
can let the .NET Framework handle the job for you automatically. 

Web Forms Manage the View State 

Without some means of preserving the state between round trips to the Web 
server, data that you’ve entered onto a Web page would disappear as you post 
back a page. If you click a button, or take any other action that causes a post 
back to the server, without some help from ASP.NET, your data would be lost 



State Management 

4 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

as the server resends the current page. ASP.NET takes care of managing this 
round-trip postback state for you with no extra coding on your part.  

ASP.NET keeps track of this data by adding a hidden input control on each 
page. This control (always named __VIEWSTATE) maintains all the information 
from all the controls on the page that have their EnableViewState property set 
to True. You can see this hidden input variable if you view the source for a Web 
page from your browser. ASP.NET compresses and encrypts the state 
information, so you won’t be able to discern any of its contents. 

TIP  To follow along with the code in this chapter, you 
can load the StateMgmt.sln  solution from the 
Ch11-ASPNET-StateMgmt or Ch11-ASPNET-
StateMgmt-CS folder. 

Using the Session Object 
The ViewState information is great for maintaining state across postbacks on a 
single page, but as you develop Web applications in .NET, you will find that 
there is a definite need to keep track of data from one page to another, not just 
on a single page. That’s when you need a Session Object.  

Each time a new user comes into your site, IIS creates a new Session object. 
IIS automatically assigns a unique number to this session and places it into the 
Session object’s SessionID property. You can use this Session ID to uniquely 
identify a particular user and create your own session variables to hold state as 
long as that user’s session is active. IIS sends this Session ID to the browser as 
a dynamic cookie; each time the browser navigates to any page on the site, this 
cookie is sent to the server via the HTTP header. 

NOTE In order to make use of the Session object, your 
users must accept cookies. Although most users 
don’t turn off this capability in their b rowsers, some 
do. You’ll see, later in this chapter, how you can 
eliminate cookies when using Session variables. 

SessionID Longevity 

The Session object for a particular user does not live indefinitely. The ID only 
lives until one of the following conditions becomes true: 

• Your code calls the Session.Abandon method . 



 Using the Session Object 

Learning .NET 5 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

• The Session object times out. The default timeout value is 20 minutes, 
and so if the user doesn’t submit a request back to the site in that time, 
theSession object will be released. You can change this timeout value. 

• The IIS Service shuts down 

Creating Session Variables 

You can create your own session variables and assign values to these 
variables, using code like this: 

VB.NET 
Session("Email") = "JohnDoe@yahoo.com" 
 
C# 
Session["Email"] = "JohnDoe@yahoo.com"; 

This code creates a new Session variable, named Email, which is unique for 
this user. Once you have created Session variables, the values stay around 
until you explicitly set them equal to Nothing/null, or until the session is 
destroyed, as explained in the previous section. 

To retrieve the value of a Session variable, use code like this: 

VB.NET 
txtPassword.Text = Session("Email").ToString() 
 
C# 
txtPassword.Text = Session["Email"].ToString() 

TIP  The value returned when you retrieve a Session 
variable is an Object type—you’ll need to convert 
the value as required by your application, as in the 
previous code example. 

Issues with Session Objects 

There are several issues that you’ll need to keep in mind when using the 
Session object to maintain your application’s state. 

Memory on the Server is Limited 
Each Session variable you create consumes memory on the server. Although 
the memory needed for one variable may not seem like much, when you 
multiply all of the data in all your Session variables by the number of users that 
might hit your site at one time, your Session variables could be eating up quite 
a large amount of memory. 



State Management 

6 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

You’ll Need Some Security 
Once a session begins, the user works with the same SessionID value  until the 
session times out. If a hacker was able to retrieve this number, the hacker could 
potentially take over the user’s session. If you were storing credit card 
information into a Session variable, it’s possible that the hacker could see this 
information, causing a security leak. Although this is unlikely, it isn’t impossible. 
To get around this problem, you might wish to employ the Secure Sockets 
Layer (SSL) when working with sensitive information. 

Session Variables Don’t Scale 
A Web farm is a group of Web servers working together to service a particular 
Web site. Each time the user hits a page on your Web site, an IP router 
determines which machine is not being used too heavily and routes the request 
for the page to that machine. If the user is routed to a different machine than the 
one on which the Session object was created, the new server has no way to 
retrieve that state, and all that user’s data is lost. 

To alleviate the problem of different machines serving different pages, you can 
set values in the application’s Web.Config file that specify the name of the 
machine that stores all session variables. This way, you can dedicate one 
machine that will do nothing but manage session variables for your site.  

Although this helps with the problem of a Web farm, it introduces problems of its 
own. For example, this “session state” machine is one more machine that you 
need to keep up and running twenty-four hours a day. You might also need 
some redundancy for this machine, to provide continuity while you perform 
maintenance tasks. In addition, the one main machine could cause 
performance problems, as one machine could be a bottleneck when many 
machines have to cross the network to get at the data. In any case, we’ll 
discuss Web.Config settings later in the chapter. 

Not All Users Accept Memory Cookies 
If you have users that will not accept memory cookies in their browsers, you 
need to set a specific configuration option in .NET to make the session 
variables work correctly. In the past, memory cookies were required on the 
client browser to make Active Server Pages hold state. The .NET Framework 
can preserve session state without memory cookies. See the section 
“Cookieless Sessions” for information on setting this up. 

Turning Off Cookies Page By Page 

Whenever an ASPX page is hit, the .NET runtime will, by default, attempt to 
generate a cookie and send it to the browser. If you know that a page will not 
use any session state, you can set the EnableSessionState page directive to 
False to turn off this automatic generation, on a page-by-page basis. At the top 
of every ASPX page, you will find a Page Directive that looks like the following: 



 Using Cookies 

Learning .NET 7 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

<%@ Page Language="*" AutoEventWireup="false"  
 Codebehind="SessionTestError.vb"  
 Inherits="DotNetStateMgmt.SessionTestError"  
 EnableSessionState="False"  
%> 

Add the EnableSessionState directive and no cookie will be generated for this 
page. 

WARNING: If you attempt to use a Session object on a page 
that has the EnableSessionState Page Directive 
set to False, you will receive a runtime error. 

Using Cookies 
If you do not wish to store the state of your application on the Web server, you 
can send the state out to the client’s browser. You do this by using cookies. 

Memory Cookies 

You will most likely use a memory cookie, as these cookies are destroyed when 
the user closes their browser. To create a memory cookie, you use the Cookies 
property of the Response object, as shown in the following code. In this 
example, the code creates a memory cookie named “Email”, and assigns the 
email address into the cookie. 

VB.NET 
Response.Cookies("Email").Value = "JohnDoe@yahoo.com" 
 
C# 
Response.Cookies["Email"].Value = "JohnDoe@yahoo.com"; 

Another method of creating a new cookie is to use the Add method of the 
Cookies collection, which is a property of the Response object. You can create 
a new System.Web.HttpCookie object, and pass in the name and the value to 
the constructor for that object. 



State Management 

8 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

VB.NET 
Response.Cookies.Add(New _ 
 System.Web.HttpCookie("Email", "JohnDoe@yahoo.com")) 
 
C# 
Response.Cookies.Add(new _ 
 System.Web.HttpCookie("Email", "JohnDoe@yahoo.com")); 

Either method shown above will set a memory cookie into the user’s browser for 
you. This assumes that the user allows memory cookies into their browser. 

To retrieve a memory cookie on any subsequent page, or even on the same 
page, use the Request object. You should first check to see if that memory 
cookie has been created yet. If you try to access the Cookies collection and 
pass in the name of a variable that has not yet been created, you will receive a 
runtime error. 

VB.NET 
If Not Request.Cookies("Email") Is Nothing Then 
   txtEmail.Text = Request.Cookies("Email").Value 
End If 
 
C# 
if (Request.Cookies["Email"] != null) 
   txtEmail.Text = Request.Cookies["Email"].Value; 

The sample code checks to see if the Request.Cookies(“Email”) object 
is Nothing. If so, you won’t be able to do anything with that cookie. If the object 
has something in it, you can retrieve the value and assign it to a text box on the 
form. 

Permanent Cookies 

If you wish to store a cookie to a user’s hard disk, you need to set the Expires 
property on that cookie. The code below shows an example of how you create a 
cookie called EmailPerm and set the expiration date for 30 days in the future. 



 Using Cookies 

Learning .NET 9 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

VB.NET 
Response.Cookies("EmailPerm").Value = txtEmail.Text 
Response.Cookies("EmailPerm").Expires = _ 
   DateTime.Today.AddDays(30) 
 
C# 
Response.Cookies["EmailPerm"].Value = txtEmail.Text; 
Response.Cookies["EmailPerm"].Expires = _ 
  DateTime.Today.AddDays(30); 

By setting the Expires property to a date in the future, the browser stores this 
cookie into a folder on the user’s hard disk. Users may set their browsers to 
only allow memory cookies and not allow permanent cookies. If the active 
browser won’t allow permanent cookies, the data can’t be stored. You will not 
receive an error that the cookie could not be stored, but you won’t get the data 
back when you request the cookie. If you wish to remove a permanent cookie, 
set the Expires property to a date in the past. 

Issues with Cookies 

Using cookies gives you excellent state management capabilities, as they are 
simple to implement, and they help you move resources off the server. Like 
almost any particular technique, cookies have some limitations. 

Some Users Don’t Allow Cookies 
Some users believe that viruses can be sent in a cookie and will not allow them 
onto their computers. Although there have never been any documented cases 
of this happening, and no one could realistically send a virus through a cookie, 
a lot of users still turn off the ability to accept cookies. When this happens, the 
user will not be able to use your site if you use cookies for managing state. 

Performance Can Deteriorate 
Imagine that a user walks through a wizard on your site, as you gather 100 
pieces of data from that user over several pages. Each page needs to post 
gathered data to the server. If you wait until all 100 pieces of data are gathered, 
you need to store that data somewhere in the meantime. If you keep putting 
data into a cookie, there is a lot of data being sent back and forth between the 
browser and the server. This will eat up a lot of bandwidth and could slow your 
whole site down. Remember, the data has to go both ways for each page the 
users hit on your site. 

Cookies Take Up Memory  
Some browsers impose a limit on the size of the cookie data they can accept, or 
the number of cookies they can accept at one time. In addition, the amount of 
memory that you may chew up on the user’s machine may cause their 



State Management 

10 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

operating system to swap some memory to disk. Under this circumstance, the 
cookie has slowed down your user’s machine as well as the server. 

Using the ViewState Property 
In some cases, you do not need to maintain state across pages, only between 
calls to the same page. If you need to do this, you can use the ViewState 
property of an ASP.NET page. (The ViewState property is an instance of a 
StateBag class. That is, the property is defined “As StateBag”. In the 
ViewStateTest.aspx page, you input three values. You can submit them to the 
server and display some data in the Result label. At the same time, you create 
three variables in a “state bag” using the ViewState object.  

In the Click event procedure of the Create State button, write the following code 
to display the data and create the ViewState object: 

VB.NET 
Public Sub btnSubmit_Click(ByVal sender As Object, _ 
 ByVal e As System.EventArgs) Handles btnSubmit.Click 
    ViewState("First") = txtFirst.Text 
    ViewState("Last") = txtLast.Text 
    ViewState("Password") = txtPassword.Text 
         
    lblResult.Text = txtLast.Text & ", " & _ 
     txtFirst.Text & " (" & txtPassword.Text & ")" 
    lblStateResult.Text = ViewState.Count.ToString() 
End Sub 
 
C# 
private void btnSubmit_Click(object sender, System.EventArgs e) 
{ 
 ViewState["First"] = txtFirst.Text; 
 ViewState["Last"] = txtLast.Text; 
 ViewState["Password"] = txtPassword.Text; 
 
 lblResult.Text = txtLast.Text + ", " +  
  txtFirst.Text + " (" + txtPassword.Text + ")"; 
 lblStateResult.Text = ViewState.Count.ToString(); 
} 

In the code listed above, you use the ViewState object just like the Session 
object. Create a new variable just by supplying the name of the variable in 



 Using the ViewState Property 

Learning .NET 11 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

parentheses and quotes and assigning a new value to it. Each of the values 
comes from the text boxes on the Web page. 

While you are still on the same page, you can test to see that the values in the 
state bag are really preserved during the round trip. You can click the Check 
State button to redisplay the values from the StateBag. (When you click the 
button, you’re submitting the page to the server, forcing a round trip.) 

VB.NET 
Private Sub btnStateCheck_Click(ByVal sender As Object, _ 
  ByVal e As System.EventArgs) Handles btnStateCheck.Click 
 If ViewState("First") Is Nothing Then 
  lblResult.Text = "NO STATE BAG SETUP" 
 Else 
  lblResult.Text = _ 
   "First=" & ViewState("First").ToString() & " - " & _ 
   "Last=" & ViewState("Last").ToString() & " - " & _ 
   "Password=" & ViewState("Password").ToString() 
 
  lblStateResult.Text = ViewState.Count.ToString() 
 End If 
End Sub 
 
C# 
private void btnStateCheck_Click(object sender,  
  System.EventArgs e) 
{ 
 if (ViewState["First"] == null) 
 { 
  lblResult.Text = "NO STATE BAG SETUP"; 
 } 
 else 
 { 
  lblResult.Text =  
   "First=" + ViewState["First"].ToString() + " - " +  
   "Last=" + ViewState["Last"].ToString() + " - " +  
   "Password=" + ViewState["Password"].ToString(); 
 
  lblStateResult.Text = ViewState.Count.ToString(); 
 } 
} 

StateBag objects are only valid while the page is active. As soon as you 
navigate to another page, the StateBag object is discarded. If you really wish to 
give the ViewState property a test, you could click on the Create State button, 
and then restart the IIS service. After restarting the IIS service, click the Check 



State Management 

12 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

State button and see that all of your values have been preserved. The 
ViewState property, with all the data, has been preserved in a hidden field in 
your form. This is a nice feature–it means that restarting the Web server will not 
affect the data you were storing for that one page. 

State Bag Issues 

The StateBag object provides a nice mechanism for storing view state 
infomation. It gives you the ability to store state for an individual page, across 
round trips to the server. But, like most techniques, it comes with its own set of 
issues: 

• The ViewState property is only valid for a single page. For multiple 
pages, you need to use another structure. 

• The more information you store in your StateBag object, the more data 
you have to exchange with your client’s browser. This can cause 
performance problems across your whole site. Remember that the data 
must go back and forth with each post of the page back to the server. 

• Memory could become an issue: Because pages could grow quite large, 
with many controls, the ViewState information can take up a large 
amount of memory on the user’s machine. This may cause the user’s 
operating system to swap some memory to disk and slow down the 
user’s machine even more. 

Cookieless Sessions 
If you know you will be running in a Web farm (described in the next section), or 
you do not want to take a chance on using cookies, you can configure 
ASP.NET to run without using cookies. You will still be able to use the Session 
object, but a memory cookie will not be generated. You can accomplish this by 
changing the Cookieless attribute in the SessionState setting in the Web.Config 
file from “false” to “true”. Once you’ve set this option to true, the SessionID 
value is added to the URL as shown in the following example. 

http://localhost/StateMgmt/(pe5t5r55ay2cqrfpu4tvgm45)/StateBagTes
t.aspx 

The additional text (pe5t…) added to the URL contains the session ID value. IIS 
uses this number as the session ID when this page is resubmitted back to the 
server. If you are using any hyperlink elements or <Form Action=””> tags in your 
HTML, .NET will add this session ID to each of these HTML tags as well. This 
works for all pages in your Web site, regardless of whether they are HTML or 
ASPX pages. 



 ASP.NET State Service 

Learning .NET 13 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

To enable cookieless sessions, you need to make one change in the 
Web.Config file in your ASP.NET application. Follow the steps below to enable 
a cookieless session. 

1. Open your application’s Web.Config file in the Visual Studio.NET editor. 

2. Locate the <sessionState> XML element. 

3. Change the Cookieless attribute from “false” to “true”. 

<sessionState  
    mode="InProc" 
    stateConnectionString="tcpip=127.0.0.1:42424" 
    sqlConnectionString="data source=127.0.0.1;user 
id=sa;password=" 
    cookieless="true"  
    timeout="20"  
/> 

WARNING: The cookieless attribute is case-sensitive. You 
must use “true” and “false” explicitly. If you use 
“True” or “False” it will not work! 

Once you have done this, run the application again and watch the URL. You will 
see a session ID appear with each page that is displayed. This ID is appended 
to each and every call to any page in this Web site. The ASP.NET engine 
handles all of the details of sending this ID back into the Session object.  

ASP.NET State Service 
One of the problems that you learned about earlier was session state 
management across a Web farm. When users come into  a Web site with 
several servers that can serve a particular user at any time, the session state 
does not automatically carry over from machine to machine. Another problem 
with session state is that it typically runs in the same process space as the IIS 
service. As a result, if your IIS service goes down, you also lose all session 
states. 

If you wish to solve both of these problems, you need to move the session state 
management to an out-of-process component that is separate from the IIS 
service. When the .NET Framework is installed, a new service called ASP.NET 
State is installed on your server. This service manages the Session object in a 
separate process. This separate process can be located on the same machine 
as IIS, or on a separate machine. 



State Management 

14 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

If you choose to use a separate server to be the state management machine, all 
the servers in your Web farm use this machine to store and retrieve state for a 
user. No matter which machine serves the user, the state is maintained on a 
separate machine, one from which each of these Web servers can retrieve 
data. 

You are probably thinking that this is going to be very difficult to set up and 
maintain. Nothing could be further from the truth! In fact, all it takes is to change 
one setting in each Web server’s Web.Config file. 

Follow the steps below to enable an out-of-process session state manager. 

1. Using the Services applet, start the ASP.NET State Service. 

2. Open your application’s Web.Config file in the Visual Studio.NET 
editor. 

3. Locate the <sessionState> XML element. 

4. Change the Mode attribute from InProc to StateServer. 

5. Make sure the Cookieless attribute is set to true. 

<sessionState  
    mode="StateServer" 
    stateConnectionString="tcpip=127.0.0.1:42424" 
    sqlConnectionString="data source=127.0.0.1;user 
id=sa;password=" 
    cookieless="true"  
    timeout="20"  
/> 

After setting this attribute, you can test your changes: 

1. Run some code that creates a session variable.  

2. Stop and re-start the IIS Admin and Web Publishing Services.  

3. Go back to a page that retrieves the session variable that you previously 
set: you’ll find that the saved variable still exists.  

If you will be using a separate machine for state management, make sure that 
the ASP.NET State service is running on this other machine. Next, set the 
stateConnectionString attribute in the <sessionstate> XML element to the name 
or IP address of the machine that will manage the state. 

TIP: By default, the stateConnectionString attribute is 
set to 127.0.0.1, which corresponds to the current 
machine. If you want to manage state on a 
separate machine, you’ll need to modify this value. 



 SQL Server State Management 

Learning .NET 15 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

Issues With the ASP.NET State Service 

There are some issues with using this ASP.NET State service: 

• Performance. The performance of retrieving state from an out-of-
process service will be slower than from an in-process service. If you are 
retrieving data across the network to a state server, you also have the 
network traffic to contend with. This can slow your retrieval of state 
significantly. 

• Redundancy. If you use another machine to manage state, you will 
need to set up some redundancy for this machine in case it crashes. Of 
course this redundancy will not help you if the original machine dies, 
because all of the session data is stored in memory. 

SQL Server State Management 
If you have an installation of SQL Server available, you might want to consider 
moving your session state management to SQL Server, especially if session 
state is of critical importance to your application and you can’t afford to lose the 
session state for a user. 

Follow the steps below to use SQL Server to manage your state. 

1. Open the Web.Config file in the Visual Studio.NET editor. 

2. Locate the <sessionState> XML element. 

3. Change the Mode attribute  to SQLServer. 

4. Make sure the Cookieless attribute is set to true. 

5. Change the sqlConnectionString attribute so the Data Source 
expression refers to your server. Add valid User Id and Password values, 
as well.You do not need to specify the name of a database, as the tables 
that manage state are located in Tempdb. 



State Management 

16 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

<sessionState  
    mode="SQLServer" 
    stateConnectionString="tcpip=127.0.0.1:42424" 
    sqlConnectionString="data source=(local);user 
id=sa;password=" 
    cookieless="true"  
    timeout="20"  
/> 

After setting these attributes, you need to create the ASPState database with 
some stored procedures that the .NET Framework will use to manage state. 
Follow these steps to complete the installation: 

1. Find the file named InstallSqlState.sql located in your 
<systemdrive>\Winnt\Microsoft.NET\Framework\<Version> folder.  

2. Load the InstallSqlState.sql file into SQL Query Analyzer and execute 
the statements. This creates the ASPState database and all of the 
appropriate stored procedures. 

After you have done these things, try running your sample that creates a 
session variable. You can stop and start the IIS and Web Publishing Services, 
and once again, your state will remain. If you open SQL Server Enterprise 
Manager and navigate to the Tempdb database, you will find a table named 
ASPStateTempSessions. Open this table and you will find a record with your 
session ID, the time this session was created, and when this session will expire. 
You will also see several binary fields. These fields contain the data for the 
session. You won’t be able to look at this data, but then you don’t really need to 
because the .NET Framework takes care of all of this for you automatically. 

Issues with Automatic SQL Server State 
Management 

Although using SQL Server to store your session state  relieves you of many 
difficult development issues, you’ll still need to consider some important 
limitations: 

• You’re limited to SQL Server. This technique can only use SQL Server, 
no other server database. If you do not have a SQL Server installation 
available, you will be unable to use this solution. 

• Performance may suffer. Like any of the state management 
techniques, using SQL Server to manage your application’s state can 
cause your performance degrade a little. Because it takes a little bit of 
time to make a connection and read and write state information in the 
database, there’s no avoiding a small bit of overhead. 



 What’s Changed from ASP? 

Learning .NET 17 
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 
  

What’s Changed from ASP?  
State management capabilities were very primitive in ASP, compared to 
ASP.NET. The Session object could only run in-process with the IIS server and 
did not have any Web farm capabilities. If you wanted to use a Web farm, you 
were forced to create some sort of COM component to store state into a SQL 
Server database. You were able to use hidden input fields, but you didn’t get 
the automatic state management provided by the ViewState object, and you 
had to manage it all manually. There were no built-in StateBag objects, so any 
state you needed to keep while on a page had to be managed in hidden input 
fields, and you had to  handle the encryption yourself. 



State Management 

18 Learning .NET  
Copyright© 2001-2005 by PDSA, Inc. and KNG Consulting, Inc. 

All rights reserved.  Reproduction is strictly prohibited. 
 

Summary 
In this chapter you learned about the many ways you can maintain state on a 
Web site. In even the smallest of Web applications, you will most likely need to 
use one or more of these techniques. Storing state information in SQL Server 
offers flexibility and performance, although sometimes you might need to use a 
combination of the techniques presented. Being aware of all the possibilities is 
important, and you might consider each of these options as you plan for state  
management in your own applications. 


